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Abstract

In this paper, we have introduced the concept of Proximate Gol’dberg order and
Proximate Gol’dberg type of a multiple entire Dirichlet series. We have given
some examples of proximate Gol’dberg order and type and also proved theorem to
construct a new proximate Gol’dberg order with the help of Gol’dberg order and
existing proximate Gol’dberg order of the function.

1. Introduction

1.1 Notations

For s = (s1, s2, ..., sn), w = (w1, w2, ..., wn) ∈ Cn and α ∈ C, we define

• s = w if and only if si = wi,
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• s+ w = (s1 + w1, s2 + w2, ..., sn + wn),

• αs = (αs1, αs2, ..., αsn),

• s.w = s1w1 + s2w2 + ...+ snwn,

• | s |= (|s1|2 + |s2|2 + ...+ |sn|2)
1
2 .

• s+R = (s1 +R, s2 +R, ..., sn +R), for R ∈ R.

We also define

• λn,m = (λ1m1 , λ2m2 , ..., λnmn) ∈ R+n where R+n = {x : x ∈ Rn, xi ≥ 0}.

• s.λn,m = s1λ1m1 + s2λ2m2 + ...+ snλnmn .

• ‖λn,m‖ = λ1m1 + λ2m2 + ...+ λnmn

For r, t ∈ R+n , we define

• r ≤ t if and only if ri ≤ ti and

• r < t if and only if ri < ti for i = 1, 2, ..., n.

Definition 1.1 :A multiple entire Dirichlet Series is of the form

f(s) =
∞∑

‖m‖=1

am1,...,mne
s.λn,m (1.1)

where am1,...,mn ∈ C, s = (s1, s2, ....., sn) ∈ Cn, sj = σj+itj , j = 1, 2, ..., n and {λj,mj}
∞
mj=1

,

j = 1, ..., n are n sequences of exponents satisfying the conditions

0 ≤ λjm1 < λjm2 < ... < λjmk →∞ as k →∞, j = 1, ..., n,

lim
mj→∞

logmj

λjmj
= 0, j = 1, 2, ..., n. and

lim sup
‖m‖→∞

log |am1....mn |
‖λn,m‖

= −∞ (1.2)

Let D ⊂ Cn be an arbitrary complete n-half-plane defined by

D = {s : s ∈ Cn, Re(si) ≤ ri} (1.3)
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where r = (r1, r2, ..., rn) ∈ Rn. Consider a parameter R ∈ R, define

R+D = D +R = {s+R : s ∈ D} (1.4)

for the multiple Dirichlet entire function f , the maximum modulus function Mf,D(R)

with respect to the region D and R ∈ R is defined as

Mf,D(R) = sup{| f(s) |: s ∈ D +R} (1.5)

Mf,D(R) is strictly increasing, increases to ∞ and continuous functions of R. The

inverse function is

M−1f,D : (L,∞)→ (−∞,∞)

where 0 ≤ L = lim
R→−∞

Mf,D(R)

Definition 1.2 [1] : The Gol’dberg order of a multiple entire Dirichlet Series f with

respect to the domain D is defined by

ρf (D) = lim sup
R→∞

log logMf,D(R)

R
(1.6)

Definition 1.3 [1] : The Gol’dberg type of a multiple entire Dirichlet Series f with

order ρf (D), (0 < ρf (D) <∞) with respect to the domain D, is defined by

σf (D) = lim sup
R→∞

logMf,D(R)

eRρf (D)
(1.7)

To refine the growth of functions whose orders are same but are of infinite type, the con-

cept of proximate order was introduced by G. Valiron [3]. Proximate order is considered

as the intermediate comparison function.

Remark 1.1 ([1] p. 64) : established the basic fact that every entire function has

a proximate order. Therefore we do not need to prove the existence of proximate

Gol’dberg order or proximate Gol’dberg type of a multiple entire Dirichlet series.

2. Proximate Gol’dberg Order of a Multiple Entire Dirichlet Series

Here we define:

Definition 2.1 : A positive continuous function ρD(R), satisfying the following prop-

erties:
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1. ρD(R) is differentiable for all large R except for some isolated points where ρ′
D

(R−
0) and ρ′

D
(R+ 0) exists.

2. lim
R→∞

ρD(R) = ρf

3. lim
R→∞

Rρ′
D

(R) = 0

4. lim sup
R→∞

logMf,D(R)

eRρD (R)
= 1,

is a proximate Gol’dberg order of a multiple entire Dirichlet series f .

Note : Although the Gol’dberg order ρf of f is independent of the choice of the

complete n half plane D, proximate Gol’dberg order ρD(R) of f is dependent on D. We

show this by the following example.

Example 2.1 : Let

f(s1, s2) = eαe
β(s1+s2)

= 1 + αeβ(s1+s2) +
(αeβ(s1+s2))2

2!
+ .......∞

be a multiple entire Dirichlet series where β > 0 and α ∈ C.

For the complete 2-half plane D = {s : s ∈ C2, Re(si) ≤ ri} where r = (r1, r2) ∈ R2, we

have,

Mf,D(R) = sup{| f(s) |: s ∈ D +R}

= e|α|e
β(r1+r2+2R)

The Gol’dberg order is

ρf = lim sup
R→∞

log logMf,D(R)

R

= lim sup
R→∞

log(|α|eβ(r1+r2+2R)
)

R

= lim sup
R→∞

log |α|+ β(r1 + r2 + 2R)

R
= 2β (2.8)

A proximate Gol’dberg order of f can be taken as:

ρD(R) =
log |α|
R

+
β(r1 + r2)

R
+ 2β; R 6= 0

Now we check all the properties of proximate Gol’dberg order for ρD(R)
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1. ρD(R) is real, continuous and piecewise differentiable for R > R0, since 1
R is real,

continuous and differentiable for R 6= 0

2. lim
R→∞

ρD(R) = lim
R→∞

(
log |α|
R

+
β(r1 + r2)

R
+ 2β) = 2β = ρf

3. lim
R→∞

Rρ′
D

(R) = lim
R→∞

R[
− log |α|
R2

− β(r1 + r2)

R2
] = 0

4. lim
R→∞

logMf,D(R)

e
Rρ
D

(R)
= lim

R→∞

|α|eβ(r1+r2+2R)

e
Rρ
D

(R)
= lim

R→∞

|α|eβ(r1+r2+2R)

e
R(

log |α|
R

+
β(r1+r2)

R
+2β)

= lim
R→∞

|α|eβ(r1+r2+2R)

elog |α|.e
β(r1+r2+2R)

= 1

Hence ρD(R) is a proximate Gol’dberg order of f . Here ρD(R) is a function of r1 and

r2 and hence ρD(R) depends on D.

We know that proximate Gol’dberg order is not a unique function, it is the function

which approximates the value of Gol’dberg order by satisfying properties as described

in Definition 2.1. In the next theorem we have established a method to construct a new

proximate Gol’dberg order from existing one.

Theorem 2.1 : Let f be a multiple Dirichlet entire function with finite Gol’dberg order

ρf . If ρD(R) is a proximate Gol’dberg order of f with respect to the arbitrary complete

n-half-plane D defined in (1.3), then

ρ∗D(R) = ρD(R) +
1

Rρf+c

is a proximate Gol’dberg order of f , where c is a real constant such that c > 1− ρf .

Proof : (i) By definition of proximate Gol’dberg order ρD(R) is real, continuous

and piecewise differentiable for R > R0, therefore ρ∗D(R) is also so as 1

R
ρf+c

is real,

continuous and differentiable for R > 0 and c > 1− ρf .

(ii) lim
R→∞

ρ∗D(R) = lim
R→∞

(ρD(R) +
1

Rρf+c
)

= lim
R→∞

ρD(R) + 0 = ρf

[Since ρf and c both are real constants. ]

(iii) lim
R→∞

Rρ∗
′

D(R) = lim
R→∞

R[ρ
′
D(R)−

ρf + c

Rρf+c+1 ]
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= lim
R→∞

Rρ
′
D(R) = 0

[Since ρD(R) is proximate Gol’dberg order]

(iv) lim
R→∞

logMf,D(R)

e
Rρ∗
D

(R)
= lim

R→∞

logMf,D(R)

e
R(ρ

D
(R)+ 1

R
ρf+c

)

= lim
R→∞

logMf,D(R)

e
Rρ
D

(R)
. lim
R→∞

1

e

1

R
ρf+c−1

= 1

[Since c > 1− ρf and ρD(R) is proximate Gol’dberg order. ]

Therefore ρ∗D(R) satisfies all the properties of proximate Gol’dberg order and hence is

a proximate Gol’dberg order of f in several complex variables. �

3. Proximate Gol’dberg Type of a Multiple Entire Dirichlet Series

We define:

Definition 3.1 : A positive continuous function σD(R), satisfying the following prop-

erties:

1. σD(R) is differentiable for all large R except for some isolated points where σ′
D

(R−
0) and σ′

D
(R+ 0) exists.

2. lim
R→∞

σD(R) = σf (D)

3. lim
R→∞

Rσ′
D

(R) = 0

4. lim sup
R→∞

Mf,D(R)

e
σ
D

(R)e
Rρf

= 1,

is called a proximate Gol’dberg type of a multiple entire Dirichlet series f with finite

Gol’dberg order ρf and finite Gol’dberg type σf (D) with respect to domain D as defined

in (1.3).

A proximate Gol’dberg type is not unique function, it is the function which approximates

the value of Gol’dberg type by satisfying properties as given in Definition (3.1). In the
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following theorem, we have found a method to construct a new proximate Gol’dberg

type with the help of existing one.

Theorem 3.1 : Let f be a multiple entire Dirichlet series with finite non-zero Gol’dberg

order ρf , finite Gol’dberg type σf (D) and proximate Gol’dberg type σD(R) with respect

to the arbitrary complete n-half-plane D, defined in (??). For a real differentiable

function φ(R) satisfying the conditions

1. lim
R→∞

φ(R) = 0

2. lim
R→∞

Rφ′(R) = 0

3. lim sup
R→∞

φ(R)eRρ = 0,

the function σ∗
D

(R) = σD(R) + φ(R) also will be a proximate Gol’dberg type of f .

Proof : (i) By definition of proximate Gol’dberg order σD(R) is real, continuous

and piecewise differentiable for R > R0. Therefore σ∗
D

(R) is also so as φ(R) is real,

continuous and differentiable.

(ii) lim
R→∞

σ∗
D

(R) = lim
R→∞

(σD(R) + φ(R))

= lim
R→∞

σD(R) + 0 = σf (D)

(iii) lim
R→∞

Rσ∗
′

D (R) = lim
R→∞

R[σ
′
D(R) + φ′(R)]

= lim
R→∞

Rσ
′
D(R) = 0.

[Since lim
R→∞

Rφ′(R) = 0 and σD(R) is proximate Gol’dberg type]

(iv) lim
R→∞

logMf,D(R)

e
σ∗
D

(R)e
Rρf

= lim
R→∞

logMf,D(R)

e
(σ
D

(R)+φ(R))e
Rρf

= lim
R→∞

logMf,D(R)

e
σ
D

(R)e
Rρf

. lim
R→∞

1

e
φ(R)e

Rρf
= 1

[Since lim
R→∞

φ(R)e
Rρf

= 0 and σD(R) is proximate Gol’dberg order. ]

Therefore σ∗D(R) satisfies all the properties of proximate Gol’dberg type and hence is a

proximate Gol’dberg type of f in several complex variables. �
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Example 3.1 : φ(R) can be taken as 1

ekR
where k(> ρf ) is a real number. Whereas

φ(R) can not be of the form 1
Rk

, where k is a real number or 1
logR or 1

log logR .

Example 3.2 : Let f(s) = eαe
β(s1+s2) be a multiple entire Dirichlet series where β > 0

and α ∈ C. Also let D be a complete 2-half plane {s : s ∈ C2, Re(si) ≤ ri} where

r = (r1, r2) ∈ R2. We show that Gol’dberg type σ
f
(D) and proximate Gol’dberg type

σD(R) of f with respect to the domain D is dependent upon D, although the Gol’dberg

order ρf of f is independent of D.

We have, Mf,D(R) = sup{| f(s) |: s ∈ D +R}

= e|α|e
β(r1+r2+2R)

The Gol’dberg order ρf = 2β [by (2.8)]

2β is independent of domain D

The Gol’dberg type

σf (D) = lim sup
R→∞

logMf,D(R)

e
ρfR

= lim sup
R→∞

|α|eβ(r1+r2+2R)

e
R(2β)

= |α|eβ(r1+r2)

A proximate Gol’dberg type can be taken as:

σD(R) = |α|eβ(r1+r2) +
1

ekR

where k(> 2β) is a real number and R > 0.

All the properties of proximate Gol’dberg type are satisfied by σD(R) which is dependent

upon the choice of domain D.
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